Respuesta :

Answer:

[tex]\sqrt{106}[/tex] or 10.29563

Step-by-step explanation:

Use the distance formula to determine the distance between the two points.

[tex]d = \sqrt{(x_{2} -x_{1})^{2} + (y_{2} - x_{1})^{2} }[/tex]

d = distance

[tex](x_{1}, y_{1})[/tex] = coordinates of the first point

[tex](x_{2}, y_{2})[/tex] = coordinates of the second point

Space

Answer:

[tex]\displaystyle d = \sqrt{106}[/tex]

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Coordinates (x, y)

Algebra II

  • Distance Formula: [tex]\displaystyle d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Step-by-step explanation:

Step 1: Define

Identify

Point (-2, -8)

Point (7, -3)

Step 2: Find distance d

Simply plug in the 2 coordinates into the distance formula to find distance d

  1. Substitute in points [Distance Formula]:                                                         [tex]\displaystyle d = \sqrt{(7--2)^2+(-3--8)^2}[/tex]
  2. [√Radical] (Parenthesis) Subtract:                                                                   [tex]\displaystyle d = \sqrt{(9)^2+(5)^2}[/tex]
  3. [√Radical] Evaluate exponents:                                                                       [tex]\displaystyle d = \sqrt{81+25}[/tex]
  4. [√Radical] Add:                                                                                                 [tex]\displaystyle d = \sqrt{106}[/tex]