Respuesta :
Answer:
[tex]\sqrt{106}[/tex] or 10.29563
Step-by-step explanation:
Use the distance formula to determine the distance between the two points.
[tex]d = \sqrt{(x_{2} -x_{1})^{2} + (y_{2} - x_{1})^{2} }[/tex]
d = distance
[tex](x_{1}, y_{1})[/tex] = coordinates of the first point
[tex](x_{2}, y_{2})[/tex] = coordinates of the second point
Answer:
[tex]\displaystyle d = \sqrt{106}[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Algebra I
- Coordinates (x, y)
Algebra II
- Distance Formula: [tex]\displaystyle d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Step-by-step explanation:
Step 1: Define
Identify
Point (-2, -8)
Point (7, -3)
Step 2: Find distance d
Simply plug in the 2 coordinates into the distance formula to find distance d
- Substitute in points [Distance Formula]: [tex]\displaystyle d = \sqrt{(7--2)^2+(-3--8)^2}[/tex]
- [√Radical] (Parenthesis) Subtract: [tex]\displaystyle d = \sqrt{(9)^2+(5)^2}[/tex]
- [√Radical] Evaluate exponents: [tex]\displaystyle d = \sqrt{81+25}[/tex]
- [√Radical] Add: [tex]\displaystyle d = \sqrt{106}[/tex]