Consider the graph of the function f(x)=2x.
Which statement describes a key feature of
function g if g(x) = 2f(x)? Answers:
A. y-intercept at (0,2)
B. y-intercept at (2,0)
C. horizontal asymptote of y = -2
D. horizontal asymptote of y = 2

Respuesta :

Given:

The parent function is:

[tex]f(x)=2^x[/tex]

The other function is:

[tex]g(x)=2f(x)[/tex]

To find:

The statement that describes a key feature of function g.

Solution:

We have,

[tex]f(x)=2^x[/tex]

[tex]g(x)=2f(x)[/tex]

Using these two functions, we get

[tex]g(x)=2(2)^x[/tex]

Putting [tex]x=0[/tex], we get

[tex]g(x)=2(2)^{(0)}[/tex]

[tex]g(x)=2(1)[/tex]

[tex]g(x)=2[/tex]

The y-intercept of the function g at (0,2). So, option A is correct and option B is incorrect.

We know that [tex]g(x)\to 0[/tex] as [tex]x\to -\infty[/tex] and it will never intersect the line [tex]y=0[/tex]. It means the horizontal asymptote of the function g is

Therefore, the correct option is A.

Answer:

A

Step-by-step explanation: