Respuesta :

Given:

The table of value and y is inversely proportional to square of x.

To find:

The value of c and d.

Solution:

It is given that y is inversely proportional to square of x. So,

[tex]y\propto \dfrac{1}{x^2}[/tex]

[tex]y=k\dfrac{1}{x^2}[/tex]               ...(i)

Where, k is the contant of proportionality.

From the given table it is clear that [tex]y=4[/tex] and [tex]x=3[/tex]. Putting these values in (i), we get

[tex]4=k\dfrac{1}{3^2}[/tex]

[tex]4=\dfrac{k}{9}[/tex]

[tex]4\times 9=k[/tex]

[tex]36=k[/tex]

Putting [tex]k=36[/tex] in (i), we get

[tex]y=36\dfrac{1}{x^2}[/tex]

[tex]y=\dfrac{36}{x^2}[/tex]             ...(ii)

Putting [tex]x=5,y=c[/tex] in (ii), we get

[tex]c=\dfrac{36}{(5)^2}[/tex]

[tex]c=\dfrac{36}{25}[/tex]

Putting [tex]x=d,y=2[/tex] in (ii), we get

[tex]2=\dfrac{36}{d^2}[/tex]

[tex]d^2=\dfrac{36}{2}[/tex]

[tex]d^2=18[/tex]

Taking square root on both sides, we get

[tex]d=\pm \sqrt{18}[/tex]

[tex]d=\pm 3\sqrt{2}[/tex]

Therefore, the required values are [tex]c=\dfrac{36}{25}[/tex] and [tex]d=\pm 3\sqrt{2}[/tex].