Given the general form of the sinusoidal function, y = AsinB(x - C) + D, match the following items.

Answer:
[tex]\Delta y = A[/tex] (Amplitude) (Correct answer: 1)
[tex]\omega = B[/tex] (Angular frequency) (Correct answer: 2)
[tex]x_{o} = C[/tex] (Phase shift) (Correct answer: 3)
[tex]y_{o} = D[/tex] (Vertical shift) (Correct answer: 4)
[tex]\frac{2\pi}{\omega} = \frac{2\pi}{B}[/tex] (Period) (Correct answer: 5)
Step-by-step explanation:
The general form of a sinusoidal function is represented by the following characteristics:
[tex]y = \Delta y \cdot \sin \omega\cdot (x- x_{o}) + y_{o}[/tex] (1)
Where:
[tex]\Delta y[/tex] - Amplitude.
[tex]\omega[/tex] - Angular frequency.
[tex]x_{o}[/tex] - Phase shift.
[tex]y_{o}[/tex] - Vertical shift.
[tex]x[/tex] - Independent variable.
[tex]y[/tex] - Dependent variable.
In addition, we know that the period associated with the sinusoidal function ([tex]T[/tex]) is:
[tex]T = \frac{2\pi}{\omega}[/tex]
By direct comparison, we get the following conclusions:
[tex]\Delta y = A[/tex] (Amplitude) (Correct answer: 1)
[tex]\omega = B[/tex] (Angular frequency) (Correct answer: 2)
[tex]x_{o} = C[/tex] (Phase shift) (Correct answer: 3)
[tex]y_{o} = D[/tex] (Vertical shift) (Correct answer: 4)
[tex]\frac{2\pi}{\omega} = \frac{2\pi}{B}[/tex] (Period) (Correct answer: 5)