Respuesta :
Answer:
The acceleration of the spring at [tex]t = 3.4\,s[/tex] is -29339.947 centimeters per square second.
Explanation:
The mass-spring system experiments a Simple Harmonic Motion, whose kinematic expression is the following:
[tex]x(t) = A\cdot \cos \left(\sqrt{\frac{k}{m} }\cdot t + \phi\right)[/tex] (1)
Where:
[tex]x(t)[/tex] - Position, in centimeters.
[tex]A[/tex] - Amplitude, in centimeters.
[tex]k[/tex] - Spring constant, in newtons per meter.
[tex]m[/tex] - Mass, in kilograms.
[tex]\phi[/tex] - Phase, in radians.
By Differential Calculus, we derive expression for the velocity and acceleration of the mass-spring system:
[tex]v(t) = -\sqrt{\frac{k}{m} }\cdot A\cdot \sin \left(\sqrt{\frac{k}{m} }\cdot t +\phi\right)[/tex] (2)
[tex]a(t) = -\frac{k\cdot A}{m}\cdot \cos \left(\sqrt{\frac{k}{m} }\cdot t +\phi\right)[/tex] (3)
Where [tex]v(t)[/tex] and [tex]a(t)[/tex] are the velocity and acceleration of the system, in centimeters per second and centimeters per square second, respectively.
If we know [tex]m = 2.7\,kg[/tex], [tex]k = 159\,\frac{N}{m}[/tex], [tex]t = 0\,s[/tex], [tex]x(t) = 19\,cm[/tex] and [tex]v(t) = -13\,\frac{cm}{s}[/tex], then we have the following system of nonlinear equations:
[tex]A \cdot \cos \phi = 19[/tex] (1)
[tex]-7.674\cdot A \cdot \sin \phi = - 13[/tex] (2)
If we divide (2) by (1):
[tex]-7.674\cdot \tan \phi = -0.684[/tex]
[tex]\tan \phi = 0.089[/tex]
[tex]\phi = \tan^{-1} 0.089[/tex]
[tex]\phi \approx 0.028\,rad[/tex]
By (1), we get the value of the amplitude:
[tex]A = \frac{19}{\cos \phi}[/tex]
[tex]A = 19.075\,cm[/tex]
If we know that [tex]A = 19.075\,cm[/tex], [tex]k = 159\,\frac{N}{m}[/tex], [tex]m = 2.7\,kg[/tex], [tex]t = 3.4\,s[/tex] and [tex]\phi \approx 0.028\,rad[/tex], then the acceleration of the spring is:
[tex]a(t) = -29339.947\,\frac{cm}{s^{2}}[/tex]
The acceleration of the spring at [tex]t = 3.4\,s[/tex] is -29339.947 centimeters per square second.