A 20-year loan of 1000 is repaid with payments at the end of each year. Each of the first ten payments equals 150% of the amount of interest due. Each of the last ten payments is X. The lender charges interest at an annual effective rate of 10%. Calculate X.

Respuesta :

Answer:

[tex]x = 97[/tex]

Step-by-step explanation:

Given

[tex]t = 20[/tex] --- time (years)

[tex]A =1000[/tex] --- amount

[tex]r = 10\%[/tex] --- rate of interest

Required

The last 10 payments (x)

First, calculate the end of year 1 payment

[tex]y_1(end) = 10\% * 1000 * 150\%[/tex]

[tex]y_1(end) = 150[/tex]

Amount at end of year 1

[tex]A_1=A - y_1(end) - r * A[/tex]

[tex]A_1=1000 - (150 - 10\% * 1000)[/tex]

[tex]A_1 =1000 - (150- 100)[/tex]

[tex]A_1 =950[/tex]

Rewrite as:

[tex]A_1 = 0.95 * 1000^1[/tex]

Next, calculate the end of year 1 payment

[tex]y_2(end) = 10\% * 950 * 150\%[/tex]

[tex]y_2(end) = 142.5[/tex]

Amount at end of year 2

[tex]A_2=A_1 - (y_2(end) - r * A_1)[/tex]

[tex]A_2=950 - (142.5 - 10\%*950)[/tex]

[tex]A_2 = 902.5[/tex]

Rewrite as:

[tex]A_2 = 0.95 * 1000^2[/tex]

We have been able to create a pattern:

[tex]A_1 = 1000 * 0.95^1 = 950[/tex]

[tex]A_2 = 1000 * 0.95^2 = 902.5[/tex]

So, the payment till the end of the 10th year is:

[tex]A_{10} = 1000*0.95^{10}[/tex]

[tex]A_{10} = 598.74[/tex]

To calculate X (the last 10 payments), we make use of the following geometric series:

[tex]Amount = \sum\limits^{9}_{n=0} x * (1 + r)^n[/tex]

[tex]Amount = \sum\limits^{9}_{n=0} x * (1 + 10\%)^n[/tex]

[tex]Amount = \sum\limits^{9}_{n=0} x * (1 + 0.10)^n[/tex]

[tex]Amount = \sum\limits^{9}_{n=0} x * (1.10)^n[/tex]

The amount to be paid is:

[tex]Amount = A_{10}*(1 + r)^{10}[/tex] --- i.e. amount at the end of the 10th year * rate of 10 years

[tex]Amount = 1000 * 0.95^{10} * (1+r)^{10}[/tex]

So, we have:

[tex]Amount = \sum\limits^{9}_{n=0} x * (1.10)^n[/tex]

[tex]\sum\limits^{9}_{n=0} x * (1.10)^n = 1000 * 0.95^{10} * (1+r)^{10}[/tex]

[tex]\sum\limits^{9}_{n=0} x * (1.10)^n = 1000 * 0.95^{10} * (1+10\%)^{10}[/tex]

[tex]\sum\limits^{9}_{n=0} x * (1.10)^n = 1000 * 0.95^{10} * (1+0.10)^{10}[/tex]

[tex]\sum\limits^{9}_{n=0} x * (1.10)^n = 1000 * 0.95^{10} * (1.10)^{10}[/tex]

The geometric sum can be rewritten using the following formula:

[tex]S_n = \sum\limits^{9}_{n=0} x * (1.10)^n[/tex]

[tex]S_n =\frac{a(r^n - 1)}{r -1}[/tex]

In this case:

[tex]a = x[/tex]

[tex]r = 1.10[/tex]

[tex]n =10[/tex]

So, we have:

[tex]\frac{x(r^{10} - 1)}{r -1} = \sum\limits^{9}_{n=0} x * (1.10)^n[/tex]

[tex]\frac{x((1.10)^{10} - 1)}{1.10 -1} = \sum\limits^{9}_{n=0} x * (1.10)^n[/tex]

[tex]\frac{x((1.10)^{10} - 1)}{0.10} = \sum\limits^{9}_{n=0} x * (1.10)^n[/tex]

[tex]x * \frac{1.10^{10} - 1}{0.10} = \sum\limits^{9}_{n=0} x * (1.10)^n[/tex]

So, the equation becomes:

[tex]x * \frac{1.10^{10} - 1}{0.10} = 1000 * 0.95^{10} * (1.10)^{10}[/tex]

Solve for x

[tex]x = \frac{1000 * 0.95^{10} * 1.10^{10} * 0.10}{1.10^{10} - 1}[/tex]

[tex]x = 97.44[/tex]

Approximate

[tex]x = 97[/tex]