A local running group collected data on the number of miles its group members run each week, x, and their average mile time, y. The results are shown in the table below. Weekly Mileage, x 10 25 12 10 15 20 22 25 20 24 Avg. Mile Time, y 9.3 8.75 8.2 5.5 6.3 8.5 6.7 6.35 5.45 6.25 Calculate the correlation coefficient using technology and interpret what it represents. The correlation coefficient of the data is -0.13, which means as the weekly mileage increases, the average mile time decreases. The correlation coefficient of the data is 0.87, which means as the weekly mileage increases, the average mile time increases. The correlation coefficient of the data is 0.87, which means as the weekly mileage increases, it has no affect on the average mile time. The correlation coefficient of the data is -0.13, which means as the weekly mileage increases, it has no effect on the average mile time.

Respuesta :

Answer:

The correlation coefficient of the data is -0.13, which means as the weekly mileage increases, it has no effect on the average mile time.Step-by-step explanation:

The correlation coefficient of a data set describes how closely related two variables are. Correlation coefficients close to positive 1 show a strong positive correlation, while correlation coefficients close to negative 1 show a strong negative correlation. When a correlation coefficient is close to 0, it shows no correlation between the data.

For the given data set, calculate the correlation coefficient using technology.

This r-value is closer to 0 then it is to -1. Thus, the correlation coefficient of the data is -0.13, which means as the weekly mileage increases, it has no effect on the average mile time.

Answer:

The correlation coefficient of the data is -0.13, which means as the weekly mileage increases, it has no effect on the average mile time.Step-by-step explanation:

The correlation coefficient of a data set describes how closely related two variables are. Correlation coefficients close to positive 1 show a strong positive correlation, while correlation coefficients close to negative 1 show a strong negative correlation. When a correlation coefficient is close to 0, it shows no correlation between the data.

For the given data set, calculate the correlation coefficient using technology.

This r-value is closer to 0 then it is to -1. Thus, the correlation coefficient of the data is -0.13, which means as the weekly mileage increases, it has no effect on the average mile time.