f(2) 42 g(x) = 2x +3 Find 4) (. Include any restrictions on the domain. O A. 2.2---3 417 2 > 0 B. 47 2 2 r--3, (1) (a) = (4) (a) x A 을 c. (5) (r) = 1,2*0 OD (1) (a= + 2

Answer:
Option D
Step-by-step explanation:
Given f(x) = [tex]\sqrt[3]{4x}[/tex]
g(x) = 2x + 3
Since, [tex](\frac{f}{g})(x)=\frac{f(x)}{g(x)}[/tex]
[tex]=\frac{\sqrt[3]{4x}}{2x+3}[/tex]
This function is defined for the denominator is not equal to zero.
(2x + 3) ≠ 0
x ≠ [tex]-\frac{3}{2}[/tex]
Therefore, Option D will be the correct option.