Respuesta :

Answer:

[tex]y=2x+5[/tex]

Step-by-step explanation:

Hi there!

Slope-intercept form: [tex]y=mx+b[/tex] where m is the slope and b is the y-intercept (the value of y when x is 0)

1) Determine the slope (m)

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex] where two given points are [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex]

Plug in the given points (-3,-1) and (1,7)

[tex]m=\frac{7-(-1)}{1-(-3)}\\m=\frac{7+1}{1+3}\\m=\frac{8}{4}\\m=2[/tex]

Therefore, the slope of the line is 2. Plug this into [tex]y=mx+b[/tex]:

[tex]y=2x+b[/tex]

2) Determine the y-intercept (b)

[tex]y=2x+b[/tex]

Plug in one of the given points and solve for b

[tex]7=2(1)+b\\7=2+b[/tex]

Subtract 2 from both sides to isolate b

[tex]7-2=2+b-2\\5=b[/tex]

Therefore, the y-intercept is 5. Plug this back into [tex]y=2x+b[/tex]:

[tex]y=2x+5[/tex]

I hope this helps!