What are the solutions of x2 - 2x +17 - 0?
O A. x = 1+2, or x = 1 - 2
O B. X = 1+4, or x = 1- 47
O c. x = 2, or x = -2
O D. x = 4; or x = -4/

What are the solutions of x2 2x 17 0 O A x 12 or x 1 2 O B X 14 or x 1 47 O c x 2 or x 2 O D x 4 or x 4 class=

Respuesta :

Answer:

option B

Step-by-step explanation:

[tex]x^2 - 2x + 17 = 0 \ , \ [ \ where \ a = 1 , \ b = - 2 \ c = 17 \ ][/tex]

[tex]x = \frac{- b \ \pm \sqrt{b^2 - 4ac}}{2a}\\\\x = \frac{2 \ \pm \sqrt{2^2 - (4 \times 1 \times 17)}}{ 2 \times 1}\\\\x = \frac{2 \ \pm \sqrt{4 - 68}}{ 2 }\\\\x = \frac{2 \ \pm \sqrt{-64}}{ 2 }\\\\x = \frac{2 \ \pm \sqrt{8^2 \times -1}}{ 2 }\\\\x = \frac{2 \ \pm \ 8\sqrt{ -1}}{ 2 }\\\\[/tex]              

[tex]x = \frac{2 \ \pm\ 8 i}{ 2 }\\\\[/tex]                               [tex][ \ where \ i = \ \sqrt{i} \ ][/tex]

[tex]x = 1 \ \pm \ 4i\\\\x = 1 + 4i , \ x = 1 - 4i[/tex]

Answer:

O B.  [tex]x=1+4i[/tex] or [tex]x=1-4i[/tex]

Step-by-step explanation:

Use the Quadratic Formula for the Quadratic Equation!

Quadratic Equation: [tex]x^{2} -2x+17=0[/tex]

Quadratic Formula: [tex]x= \frac{-b±\sqrt{b^2-4ac} }{2a}[/tex]

**********************************************************************

Now set up the values like this!

[tex]ax^{2} +bx+c[/tex]

**********************************************************************

[tex]x=\frac{-b±\sqrt{-2^2-(4(0)(17)} }{2(0)}[/tex]

[tex]x=\frac{-b±\sqrt{4-(1)} }{0}[/tex]

x = 1 - 4i

x = 1 + 4i