Respuesta :

Answer:

(a) The common difference is 4

(b) The 25th term is 108

Step-by-step explanation:

Given

[tex]T_7 = 36[/tex]

[tex]T_{14} = 64[/tex]

Solving (a): The common difference

The nth term of an AP is:

[tex]T_n = a + (n -1)d[/tex]

For the 7th term, we have:

[tex]36 = a + (7 -1)d[/tex]

[tex]36 = a + 6d[/tex]

For the 14th term, we have:

[tex]64 =a + (14 -1)d[/tex]

[tex]64 =a + 13d[/tex]

Subtract both equations

[tex]64 - 36 = a - a +13d-6d[/tex]

[tex]28 = 7d[/tex]

Divide by 7

[tex]d = 4[/tex]

Solving (b): The 25th term

First, we calculate the first term (a)

The 7th term of the progression is:

[tex]36 = a + 6d[/tex]

Substitute [tex]d = 4[/tex]

[tex]36 = a + 6 * 4[/tex]

[tex]36 = a + 24[/tex]

Subtract 24

[tex]a = 36 -24[/tex]

[tex]a = 12[/tex]

The 25th term is:

[tex]T_{25} = a + (25 - 1)d[/tex]

[tex]T_{25} = 12 + (25 - 1)*4[/tex]

[tex]T_{25} = 12 + 24*4[/tex]

[tex]T_{25} = 108[/tex]