Which expression is equivalent to 3/56x^7y^5 , if x ≠0 and y≠0

Answer:
[tex]2x^2y\sqrt[3]{7xy^2}[/tex]
Step-by-step explanation:
Given
[tex]\sqrt[3]{56x^7y^5}[/tex]
Required
Solve
Expand
[tex]\sqrt[3]{8*7*x^6*x*y^3*y^2}[/tex]
Rewrite as:
[tex]\sqrt[3]{8*x^6*y^3*7*x*y^2}[/tex]
Split
[tex]\sqrt[3]{8*x^6*y^3} *\sqrt[3]{7*x*y^2}[/tex]
Express 8 as 2^3
[tex]\sqrt[3]{2^3*x^6*y^3} *\sqrt[3]{7*x*y^2}[/tex]
Apply law of indices
[tex]2^{(3/3)}*x^{(6/3)}*y^{(3/3)} *\sqrt[3]{7*x*y^2}[/tex]
[tex]2*x^2*y *\sqrt[3]{7*x*y^2}[/tex]
[tex]2x^2y *\sqrt[3]{7xy^2}[/tex]
[tex]2x^2y\sqrt[3]{7xy^2}[/tex]