Respuesta :
Answer:
[tex]\sqrt{68}[/tex]
Step-by-step explanation:
(7 , -1) = (x1 , y1)
(9 , -9) = (x2 , y2)
distance formula = [tex]\sqrt{(x2 - x1)^2 + (y2 - y1)^2}[/tex]
=[tex]\sqrt{(9 - 7)^2 + (-9 - (-1))^2}[/tex]
=[tex]\sqrt{2^2 + (-9 + 1)^2}[/tex]
=[tex]\sqrt{4 + (-8)^2}[/tex]
=[tex]\sqrt{4 + 64}[/tex]
=[tex]\sqrt{68}[/tex]
Answer:
[tex]Distance = \sqrt{ 68 } \\\\or \\\\Distance =2 \sqrt{17}[/tex]
Step-by-step explanation:
[tex]Let \ (x_1 , y_1) = ( 7 , - 1 ) \ and \ (x_2, y _ 2 ) = ( 9 , - 9 )\\\\\\Distance = \sqrt{(x_2 - x_ 1)^2 + (y_ 2 - y_ 1)^2}\\\\[/tex]
[tex]= \sqrt{(9 - 7)^2 + ( -9 --1)^2} \\\\=\sqrt{2^2 + ( -9 + 1)^2 }\\\\=\sqrt {4 + (-8)^2 }\\\\=\sqrt{ 4 + 64 }\\\\=\sqrt{68}\\\\= \sqrt { 4 \times 17}\\\\=\sqrt{2^2 \times 17}\\\\=2 \sqrt{17}[/tex]