Answer:
[tex]P(x > 0.28) = 1[/tex]
Step-by-step explanation:
Given
[tex]p = 33\%[/tex] --- orders from first time customer
[tex]n =163[/tex] --- samples
Required
[tex]P(x >0.28)[/tex]
First, calculate the mean
[tex]\bar x = np[/tex]
[tex]\bar x = 163 * 33\%[/tex]
[tex]\bar x = 53.79[/tex]
Next, the standard deviation
[tex]\sigma = \sqrt{\bar x * (1 - p)[/tex]
[tex]\sigma = \sqrt{53.79* (1 - 33\%)[/tex]
[tex]\sigma = \sqrt{53.79* (1 - 0.33)[/tex]
[tex]\sigma = \sqrt{53.79* 0.67[/tex]
[tex]\sigma = 6.00[/tex]
For [tex]P(x >0.28)[/tex],
The z score is:
[tex]z = \frac{x - \bar x}{\sigma}[/tex]
[tex]z = \frac{0.28 - 53.79}{6}[/tex]
[tex]z = \frac{-53.51}{6}[/tex]
[tex]z = -8.92[/tex]
So:
[tex]P(x > 0.28) = P(z > -8.92)[/tex]
From z probability:
[tex]P(z > -8.92) =1[/tex]
Hence:
[tex]P(x > 0.28) = 1[/tex]