contestada

Transmission electron microscopes that use high-energy electrons accelerated over a range from 40.0 to 100 kV are employed in many applications including the study of biological samples (like a virus) and nanoscience research and development (alloy particles and carbon nanotubes, for example). What would be the spatial limitation (in pm) for this range of electrons

Respuesta :

Answer:

Explanation:

Using the concept of de Broglie wavelength under relativistic conditions to determine the spatial limits for electron range.

de Broglie wave-length [tex]\lambda = \dfrac{h}{p}[/tex]

where;

h = plank's constant

p = momentum of particle which is expressed as:

[tex]p = \dfrac{\sqrt{k^2+2kmc^2}}{c}[/tex]

replacing the expression for (p) into [tex]\lambda = \dfrac{h}{p}[/tex], we have:

[tex]\lambda = \dfrac{h}{\dfrac{\sqrt{k^2 +2kmc^2}}{c}}[/tex]

[tex]\lambda = \dfrac{hc}{\sqrt{k^2+2kmc^2}} --- (1)[/tex]

here;

c = velocity of light = 3 × 10⁸ m/s

h = 4.13 × 10⁻¹⁵ eV.s

i.e.

hc = (4.13 × 10⁻¹⁵ eV.s)(3 × 10⁸ m/s)

hc = 1240 eV.m

The electron's rest energy (mc²) = 0.511 × 10⁶ eV

For the elctrons;

the minimum accelerated voltage = 40kV

the maximum accelerated voltage = 100 kV

the minimum K.E of the electron K = eΔV

K = e × 40 kV

K = 40 KeV

K = 40 × 10³ eV

From equation (1);

[tex]\lambda = \dfrac{hc}{\sqrt{k^2 +2kmc^2}}[/tex]

[tex]\lambda = \dfrac{1240 \ eV.nm}{\sqrt{(40 \times 10^3 \ eV)^2 +2(40 \times 10^3 \ eV)(0.511 \times 10^6 \ eV})}[/tex]

[tex]\lambda = \dfrac{1240 \ eV.nm}{\sqrt{((1600000000) +(80000\times 511000))eV}}[/tex]

[tex]\lambda = \dfrac{1240 \ eV.nm}{\sqrt{((1600000000) +(40880000000)eV}}[/tex]

[tex]\lambda = \dfrac{1240 \ eV.nm}{\sqrt{(42480000000) \ eV}}[/tex]

[tex]\lambda = \dfrac{1240 \ eV.nm}{206106.769 \ eV}}[/tex]

[tex]\lambda = 0.062 \ nm[/tex]

[tex]\mathbf{\lambda = 6.20 \ pm}[/tex]

The maximum K.E of the electron K = eΔV

K = e × 10 kV

K = 10 KeV

K = 100 × 10³ eV

From equation (1);

[tex]\lambda = \dfrac{hc}{\sqrt{k^2 +2kmc^2}}[/tex]

[tex]\lambda = \dfrac{1240 \ eV.nm}{\sqrt{(100 \times 10^3 \ eV)^2 +2(100 \times 10^3 \ eV)(0.511 \times 10^6 \ eV})}[/tex]

[tex]\lambda = 0.037 \ nm[/tex]

[tex]\mathbf{\lambda = 3.70 \ pm}[/tex]

As a result, the spatial limits for the electron's range span from 6.02 pm to 3.70 pm.