tank contains 250 liters of fluid in which 20 grams of salt is dissolved. Pure water is then pumped into the tank at a rate of 5 L/min; the well-mixed solution is pumped out at the same rate. Find the number A(t) of grams of salt in the tank at time t.

Respuesta :

Solution :

Given data :

[tex]c_{in}[/tex] = 1 g/L

[tex]r_{in}[/tex] = 5 L/min

[tex]r_{out}[/tex] = 5 L/min

[tex]$v_0$[/tex] = 250 L

[tex]A_0[/tex] = 20 g

∴ [tex]r_{net} = r_{in}- r_{out}[/tex]

         = 5 - 5

          = 0

[tex]c_{out} = \frac{A}{250} \ g/L[/tex]

Now, [tex]\frac{dA}{dt}=(r_{in} \times c_{in}) - (r_{out} \times c_{out})[/tex]

[tex]$\frac{dA}{dt} = 5-5\left(\frac{A}{250}\right)$[/tex]

[tex]\frac{dA}{dt}+5 \left(\frac{A}{250}\right) = 5[/tex]

[tex]\frac{dA}{dt}+5 \left(\frac{A}{250}\right) = 5 \text{ with} \ A_0 = 20[/tex]

Integrating factor = exp(5 t/250)

Therefore,

[tex]A \times \exp (5t \ /250) = \text{integral of}\ 5 \times \exp (5t / 250) + C[/tex]

Put [tex]A_0=250+C[/tex]

C = -230

[tex]A \times \exp(5t/250) = 250 \exp(5t/250) + (-230)[/tex]

[tex]A(t) = 250-230 \exp(-5t/250)[/tex]

[tex]A(t) = 250-230e^{\left(\frac{-t}{50}\right)} \ g[/tex]