If v = 11 and w = -28, what is w + 4y?
Submit

Answer:
Step-by-step explanation:
Substitute the values making it,
[tex]\sqrt{-28+4(11)}[/tex] which = 4
[tex]\sf \bf {\boxed {\mathbb { ±4}}}[/tex]
[tex]\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\red{:}}}}}[/tex]
[tex] \sqrt{w + 4v} [/tex]
Plugging in the value "[tex]v = 11[/tex]" and "[tex]w= -28[/tex]" in the above expression, we have
[tex] = \sqrt{ - 28 + 4(11)} [/tex]
[tex] = \sqrt{ - 28 + 44} [/tex]
[tex] = \sqrt{16} [/tex]
[tex] = \sqrt{4 \times 4} [/tex]
[tex] = \sqrt{ ({4})^{2} } [/tex]
[tex] = ±4[/tex]
[tex]\large\mathfrak{{\pmb{\underline{\orange{Mystique35 }}{\orange{❦}}}}}[/tex]