Respuesta :

Answer:

[tex]-6 < k < 2[/tex]

Step-by-step explanation:

Given

[tex]y = x^2 - 2x[/tex]

[tex]y =kx -4[/tex]

Required

Possible values of k

The general quadratic equation is:

[tex]ax^2 + bx + c = 0[/tex]

Subtract [tex]y = x^2 - 2x[/tex] and [tex]y =kx -4[/tex]

[tex]y - y = x^2 - 2x - kx +4[/tex]

[tex]0 = x^2 - 2x - kx +4[/tex]

Factorize:

[tex]0 = x^2 +x(-2 - k) +4[/tex]

Rewrite as:

[tex]x^2 +x(-2 - k) +4=0[/tex]

Compare the above equation to: [tex]ax^2 + bx + c = 0[/tex]

[tex]a = 1[/tex]

[tex]b= -2-k[/tex]

[tex]c =4[/tex]

For the equation to have two distinct solution, the following must be true:

[tex]b^2 - 4ac > 0[/tex]

So, we have:

[tex](-2-k)^2 -4*1*4>0[/tex]

[tex](-2-k)^2 -16>0[/tex]

Expand

[tex]4 +4k+k^2-16>0[/tex]

Rewrite as:

[tex]k^2 + 4k - 16 + 4 >0[/tex]

[tex]k^2 + 4k - 12 >0[/tex]

Expand

[tex]k^2 + 6k-2k - 12 >0[/tex]

Factorize

[tex]k(k + 6)-2(k + 6) >0[/tex]

Factor out k + 6

[tex](k -2)(k + 6) >0[/tex]

Split:

[tex]k -2 > 0[/tex] or [tex]k + 6> 0[/tex]

So:

[tex]k > 2[/tex] or k [tex]> -6[/tex]

To make the above inequality true, we set:

[tex]k < 2[/tex] or [tex]k >-6[/tex]

So, the set of values of k is:

[tex]-6 < k < 2[/tex]