It is given the quadratic equation (q + 1 )x² - 8x + p = 0,where p and q are constants,has two equal real roots.Express p in terms of q.
Do help meeee!!!

Respuesta :

Step-by-step explanation:

answer is in the photo above

Ver imagen chibunduoyibe

Answer:

[tex]\displaystyle p = \frac{16}{q + 1}[/tex].

Step-by-step explanation:

Factor out the coefficient of [tex]x^{2}[/tex]:

[tex]\displaystyle \frac{1}{q + 1}\, [(q + 1)\, x^2 - 8\, x + p] = 0[/tex].

[tex]\displaystyle x^2 - \frac{8}{q + 1} \, x + \frac{p}{q + 1} = 0[/tex].

Let [tex]m[/tex] denote the real root of this equation. By the Factor Theorem, this equation would have the factor [tex](x - m)[/tex] repeated for two times in total:

[tex](x - m)^{2} = 0[/tex].

Expand to obtain: [tex]x^2 - 2\, m\cdot x + m^{2} =0[/tex].

Compare this expression with [tex]\displaystyle x^2 - \frac{8}{q + 1} \, x + \frac{p}{q + 1} = 0[/tex]:

[tex]\displaystyle -\frac{8}{q + 1} = -2\, m[/tex] (for the coefficient of [tex]x[/tex].)

[tex]\displaystyle \frac{p}{q + 1} = m^2[/tex] (for the constant.)

Rewrite the first equation to find an expression for [tex]m[/tex] in terms of [tex]q[/tex]:

[tex]\displaystyle m = \frac{4}{q + 1}[/tex].

Substitute this expression for [tex]m[/tex] into the second equation to find an expression for [tex]p[/tex] in terms of [tex]q[/tex]:

[tex]\displaystyle \frac{p}{q + 1} = m^2[/tex].

[tex]\displaystyle \frac{p}{q + 1} = \frac{4^2}{(q+1)^{2}}[/tex].

[tex]\displaystyle p = \frac{16}{q + 1}[/tex].

Verify that this expression for [tex]p[/tex] satisfies the requirements:

[tex]\displaystyle (q + 1) \, x^{2} - 8\, x + \frac{16}{q + 1} = 0[/tex].

[tex]\displaystyle x^2 - \frac{8}{q + 1} + \frac{16}{(q+1)^2} = 0[/tex].

[tex]\displaystyle x = \frac{4}{q + 1}[/tex] is the (repeated) real root of this quadratic equation.