Answer:
[tex]E = 1.9 * 10^{-3}J[/tex]
Explanation:
The complete question is summarized as thus:
Given
[tex]C_1 =1.5\mu F[/tex]
[tex]C_2 =0.25\mu F[/tex]
[tex]V = 50V[/tex] --- voltage
Connect type: Parallel
Required
The potential energy stored in the [tex]1.5\mu F[/tex] capacitor
The energy stored is calculated as:
[tex]E = \frac{1}{2}CV^2[/tex]
Where:
[tex]C = C_1 =1.5\mu F[/tex] --- the capacitor
[tex]V = 50V[/tex] --- the voltage across the capacitor
So, we have:
[tex]E = \frac{1}{2} * 1.5\mu F * (50V)^2[/tex]
Convert to Farad
[tex]E = \frac{1}{2} * 1.5 * 10^{-6} F * (50V)^2[/tex]
[tex]E = \frac{1}{2} * 1.5 * 10^{-6} F * 2500V^2[/tex]
[tex]E = 0.001875J[/tex]
Rewrite as:
[tex]E = 1.875 * 10^{-3}J[/tex]
Approximate
[tex]E = 1.9 * 10^{-3}J[/tex]