Respuesta :

Answer:

[tex]E = 1.9 * 10^{-3}J[/tex]

Explanation:

The complete question is summarized as thus:

Given

[tex]C_1 =1.5\mu F[/tex]

[tex]C_2 =0.25\mu F[/tex]

[tex]V = 50V[/tex] --- voltage

Connect type: Parallel

Required

The potential energy stored in the [tex]1.5\mu F[/tex] capacitor

The energy stored is calculated as:

[tex]E = \frac{1}{2}CV^2[/tex]

Where:

[tex]C = C_1 =1.5\mu F[/tex] --- the capacitor

[tex]V = 50V[/tex] --- the voltage across the capacitor

So, we have:

[tex]E = \frac{1}{2} * 1.5\mu F * (50V)^2[/tex]

Convert to Farad

[tex]E = \frac{1}{2} * 1.5 * 10^{-6} F * (50V)^2[/tex]

[tex]E = \frac{1}{2} * 1.5 * 10^{-6} F * 2500V^2[/tex]

[tex]E = 0.001875J[/tex]

Rewrite as:

[tex]E = 1.875 * 10^{-3}J[/tex]

Approximate

[tex]E = 1.9 * 10^{-3}J[/tex]