Respuesta :
Answer:
e. Repeated applications of L'Hopital Rule result in the original limit or the limit of the reciprocal of the function.
Step-by-step explanation:
[tex]\lim_{x \to \infty} \frac{x}{\sqrt{x^{2} + 6} }[/tex] = ∞/√(∞² + 6)= ∞/∞
Using L'Hopital's Rule,
[tex]\lim_{x \to \infty} \frac{x}{\sqrt{x^{2} + 6} }[/tex] = [tex]\lim_{x \to \infty} \frac{\frac{dx}{dx} }{\frac{d\sqrt{x^{2} + 6}}{dx} } = \lim_{x \to \infty} \frac{\sqrt{x^{2} + 6}}{x}[/tex] = √(∞² + 6)/ ∞ = ∞/∞
Applying L'Hopital's rule again, we have
[tex]\lim_{x \to \infty} \frac{\sqrt{x^{2} + 6}}{x} = \lim_{x \to \infty} \frac{\frac{\sqrt{x^{2} + 6}}{dx} }{\frac{dx}{dx}} = \lim_{x \to \infty} \frac{x}{\sqrt{x^{2} + 6}} } =[/tex] ∞/√(∞² + 6)= ∞/∞
Applying L'Hopital's rule again, we have
[tex]\lim_{x \to \infty} \frac{x}{\sqrt{x^{2} + 6} }[/tex] = [tex]\lim_{x \to \infty} \frac{\frac{dx}{dx} }{\frac{d\sqrt{x^{2} + 6}}{dx} } = \lim_{x \to \infty} \frac{\sqrt{x^{2} + 6}}{x}[/tex] = √(∞² + 6)/ ∞ = ∞/∞
Applying L'Hopital's rule again, we have
[tex]\lim_{x \to \infty} \frac{\sqrt{x^{2} + 6}}{x} = \lim_{x \to \infty} \frac{\frac{\sqrt{x^{2} + 6}}{dx} }{\frac{dx}{dx}} = \lim_{x \to \infty} \frac{x}{\sqrt{x^{2} + 6}} } =[/tex] ∞/√(∞² + 6)= ∞/∞
So, we see that repeated applications of L'Hopital Rule result in the original limit or the limit of the reciprocal of the function.
So, e is the answer.