Answer:
[tex]Pr = \frac{1}{6}[/tex]
Step-by-step explanation:
Required
The probability of rolling a double
The number of outcomes of rolling two number cubes is:
[tex]n = 6^2[/tex]
Where:
[tex]6 \to[/tex] number of sides
[tex]2 \to[/tex] number of cubes
So, we have:
[tex]n = 36[/tex]
The outcomes (d) that are double are:
[tex]d = \{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)\}[/tex]
The count is:
[tex]n(d) = 6[/tex]
So, the probability is:
[tex]Pr = \frac{n(d)}{n}[/tex]
[tex]Pr = \frac{6}{36}[/tex]
[tex]Pr = \frac{1}{6}[/tex]