Answer:
(a) The mean is 0
(b) The median is -30
(c) The mode is unimodal
Step-by-step explanation:
Given
[tex]Data: 15,-4,-10,8,14,-10,-2,-11[/tex]
Solving (a): The mean.
This is calculated using:
[tex]\bar x = \frac{\sum x}{n}[/tex]
So, we have:
[tex]\bar x =\frac{15-4-10+8+14-10-2-11}{8}[/tex]
[tex]\bar x =\frac{0}{8}[/tex]
[tex]\bar x =0[/tex]
Solving (b): The median
First, arrange the data
[tex]Sorted: -11,-10, -10, -4, -2,8,14,15[/tex]
There are 4 elements in the dataset. So, the median is the mean of the 4th and 5th item.
[tex]Median = \frac{-4-2}{2}[/tex]
[tex]Median = \frac{-6}{2}[/tex]
[tex]Median = -3[/tex]
Solving (c): The mode
The item that has occurs most is -10.
Hence, the mode is -10. The dataset is unimodal because it has only 1 mode (-10).