Perform the calculations and determine the absolute and percent relative uncertainty. Express each answer with the correct number of significant figures.

a. [9.8(±0.3)−2.31(±0.01)]8.5(±0.6)= __________
b. absolute uncertainty: __________
c. absolute uncertainty: _________
d. percent relative uncertainty: ___________

Respuesta :

Answer:

Explanation:

Given the equation:

[tex]\implies \dfrac{[9.8(\pm0.3)-2.31(\pm 0.01)]}{8.5(\pm0.6)}[/tex]

The absolute uncertainty in a measurement is the term used to describe the degree of inaccuracy.

The first step is to determine the algebraic value on the numerator.

Algebraic value = 9.8 - 231

= 7.49

The absolute uncertainty = [tex]\sqrt{(abs. uncertainty_{v_1})^2+(abs. uncertainty_{v_2})^2}[/tex]

absolute uncertainty = [tex]\sqrt{(0.3)^3 + (0.01)^2}[/tex]

= [tex]\sqrt{0.09 + 0.0001}[/tex]

= 0.300167

[9.8(±0.3) - 2.31(±0.01)] = 7.49(±0.300167)

The division process now is:

[tex]\implies \dfrac{[9.8(\pm0.3)-2.31(\pm 0.01)]}{8.5(\pm0.6)}= \dfrac{7.49 (\pm 0.300167)}{8.5 (\pm0.6)}[/tex]

Relative uncertainty = [tex]\dfrac{(\pm 0.300167)}{7.49}\times 100 \ , \ \dfrac{(\pm 0.6) }{8.5} \times 100[/tex]

Relative uncertainty = ±4.007565% ,  ±7.058824%

[tex]\text{Relative uncertainty} = \sqrt{(4.007565)^2+(7.058824)^2}[/tex]

[tex]\text{Relative uncertainty} = \sqrt{16.06057723+49.82699626}[/tex]

[tex]\text{Relative uncertainty} = \sqrt{65.88757349}[/tex]

[tex]\text{Relative uncertainty} = 8.117116[/tex]

≅ 8%

The algebraic value = [tex]\dfrac{7.49}{8.5}[/tex]

= 0.881176

≅ 0.88

The percentage of the relative uncertainty =[tex]\dfrac{\text{Absolute uncertainty }}{\text{calculated value} }\times 100[/tex]

By cross multiplying:

[tex]\text{Absolute uncertainty} (\%) = \dfrac{\text{relative uncertainty} \times \text{calculated value}}{100}[/tex]

[tex]\text{Absolute uncertainty} (\%) = \dfrac{8.117116\times 0.881176}{100}[/tex]

[tex]\text{Absolute uncertainty} (\%) = 0.0715260[/tex]

[tex]\mathbf{\text{Absolute uncertainty} (\%) \simeq 0.07}[/tex]

Finally:

[tex]\mathbf{\implies \dfrac{[9.8(\pm0.3)-2.31(\pm 0.01)]}{8.5(\pm0.6)}= 0.88 \pm (0.07) \pm 8\%}[/tex]