Respuesta :

Answer:

A. 25/33

B. 1/3

C. 1/33

D. 25/9

Answer:

[tex]\text{A. }25/33,\\\text{B. }1/3, \\\text{C. }1/33, \\\text{D. }25/9[/tex]

Step-by-step explanation:

Recall that [tex]\frac{x}{9}=0.\overline{x}[/tex] for [tex]x\in (1, 8)[/tex]. If multiple digits are repeating, increase the number of nines in the denominator as applicable.

Therefore, we have:

Part A:

"75" is repeating:

[tex]\rightarrow \frac{75}{99}=\boxed{\frac{25}{33}}[/tex]

Part B:

"3" is repeating:

[tex]\rightarrow \frac{3}{9}=\boxed{\frac{1}{3}}[/tex]

Part C:

"03" is repeating:

[tex]\rightarrow \frac{03}{99}=\frac{3}{99}=\boxed{\frac{1}{33}}[/tex]

Part D:

"7" is repeating, but there is a terminating decimal 2.0 with it ([tex]2.\overline{7}=2.0+0.\overline{7}[/tex]):

[tex]2+\frac{7}{9}=\frac{18}{9}+\frac{7}{9}=\boxed{\frac{25}{9}}[/tex]