Answer:
Following are the solution to the given question:
Step-by-step explanation:
[tex]95\%[/tex] Confidence Interval for both the percentage of all x-ray machines
p = the machinery's share is not working:
[tex]= \frac{228}{275}\\\\ = 0.829[/tex]
[tex]\text{Margin of Error} = Z_{(\frac{\alpha}{2})} \times \sqrt{( p \times (1-p)}{n})[/tex]
[tex]= 1.96 \times \sqrt{(0.829 \times \frac{0.171}{275})} \\\\= 1.96 \times 0.023 \\\\= 0.045[/tex]
Lower [tex]95\%[/tex] Confidence interval = p - error margin [tex]= 0.829 - 0.045 = 0.784[/tex]
Upper [tex]95\%[/tex] Confidence Interval = p + error margin[tex]= 0.829 + 0.045 = 0.874[/tex]
So, [tex]95\%[/tex] Confidence Interval [tex]= ( 0.78 , 0.87 )[/tex]