Respuesta :

Given:

The function is:

[tex]f(x)=\dfrac{1}{9}x-2[/tex]

To find:

The value of [tex]f^{-1}(x)[/tex].

Solution:

We have,

[tex]f(x)=\dfrac{1}{9}x-2[/tex]

Step 1: Substitute [tex]f(x)=y[/tex].

[tex]y=\dfrac{1}{9}x-2[/tex]

Step 2: Interchange x and y.

[tex]x=\dfrac{1}{9}y-2[/tex]

Step 3: Isolate the variable [tex]y[/tex].

[tex]x+2=\dfrac{1}{9}y[/tex]

[tex]9(x+2)=y[/tex]

[tex]9x+18=y[/tex]

[tex]y=9x+18[/tex]

Step 4: Substitute [tex]y=f^{-1}(x)[/tex].

[tex]f^{-1}(x)=9x+18[/tex]

Therefore, the required function is [tex]f^{-1}(x)=9x+18[/tex].