Respuesta :

Answer:

[tex]y_{1}=-\frac{9}{2}-\frac{\sqrt{201}}{2}[/tex] or [tex]y_{2}=-\frac{9}{2}+\frac{\sqrt{201}}{2}[/tex]

[tex]x_{1}=-\frac{9}{2}-\frac{\sqrt{201}}{2}[/tex] or [tex]x_{2}=-\frac{9}{2}+\frac{\sqrt{201}}{2}[/tex]

Step-by-step explanation:

Let be x the first number and y the second number.

So we have:

[tex]x+y=-9[/tex] (1)

[tex]x*y=-30[/tex] (2)

Solve x from equation 1 and put it into equation 2

[tex]x=-9-y[/tex]

[tex](-9-y)*y=-30[/tex]

[tex]-9y-y^{2}=-30[/tex]

[tex]y^{2}+9y-30=0[/tex]

Solving this quadratic equation and put it on the equation (1) the solutions will be:

[tex]y_{1}=-\frac{9}{2}-\frac{\sqrt{201}}{2}[/tex] or [tex]y_{2}=-\frac{9}{2}+\frac{\sqrt{201}}{2}[/tex]

[tex]x_{1}=-\frac{9}{2}-\frac{\sqrt{201}}{2}[/tex] or [tex]x_{2}=-\frac{9}{2}+\frac{\sqrt{201}}{2}[/tex]

I hope it helps you!