Answer:
[tex]y_{1}=-\frac{9}{2}-\frac{\sqrt{201}}{2}[/tex] or [tex]y_{2}=-\frac{9}{2}+\frac{\sqrt{201}}{2}[/tex]
[tex]x_{1}=-\frac{9}{2}-\frac{\sqrt{201}}{2}[/tex] or [tex]x_{2}=-\frac{9}{2}+\frac{\sqrt{201}}{2}[/tex]
Step-by-step explanation:
Let be x the first number and y the second number.
So we have:
[tex]x+y=-9[/tex] (1)
[tex]x*y=-30[/tex] (2)
Solve x from equation 1 and put it into equation 2
[tex]x=-9-y[/tex]
[tex](-9-y)*y=-30[/tex]
[tex]-9y-y^{2}=-30[/tex]
[tex]y^{2}+9y-30=0[/tex]
Solving this quadratic equation and put it on the equation (1) the solutions will be:
[tex]y_{1}=-\frac{9}{2}-\frac{\sqrt{201}}{2}[/tex] or [tex]y_{2}=-\frac{9}{2}+\frac{\sqrt{201}}{2}[/tex]
[tex]x_{1}=-\frac{9}{2}-\frac{\sqrt{201}}{2}[/tex] or [tex]x_{2}=-\frac{9}{2}+\frac{\sqrt{201}}{2}[/tex]
I hope it helps you!