Answer:
[tex]10 \frac{2}{5}[/tex]
Step-by-step explanation:
Using BODMAS
[tex]6\frac{1}{2} \times (\frac{8}{9} \div\frac{13}{18}) + ( \frac{3}{4} )\ of \ 3\frac{1}{5} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ [ \ solving \ expression \ inside \ bracket \ ]\\\\\frac{13}{2} \times (\frac{8}{9} \times \frac{18}{13}) + (\frac{3}{4}) \ of \ \frac{16}{5} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ [ \ \frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} \ ]\\\\\frac{13}{2} \times (\frac{16}{13}) + (\frac{3}{4}) \ of \frac{16}{5} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ [ \ solving \ of \ ] \\\\[/tex]
[tex]\frac{13}{2} \times (\frac{16}{13} ) + (\frac{3}{4} \times \frac{16}{5} )\\\\\frac{13}{2} \times (\frac{16}{13} ) + \frac{12}{5} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ [\ solving \ \times \ expressions \ ] \\\\(\frac{13}{2} \times \frac{16}{13}) + \frac{12}{5}\\\\8 + \frac{12}{5}\\\\\frac{40 + 12}{5}\\\\\frac{52}{5}\\\\10\frac{2}{5}[/tex]