Suppose the true proportion of voters in the county who support a restaurant tax is 0.54. Consider the sampling distribution for the proportion of supporters with sample size n = 168.
What is the mean of this distribution?
What is the standard error of this distribution?

Respuesta :

Answer:

The correct answer is:

(a) 0.54

(b) 0.0385

Step-by-step explanation:

Given:

Restaurant tax,

p = 0.54

Sample size,

n = 168

Now,

(a)

The mean will be:

⇒ μ [tex]\hat{p}= p[/tex]

         [tex]=0.54[/tex]

(b)

The standard error will be:

[tex]\sigma \hat{p}[/tex] = [tex]\sqrt{[\frac{p(1-p)}{n} ]}[/tex]

    = [tex]\sqrt{[\frac{(0.54\times 0.46)}{168} ]}[/tex]

    = [tex]\sqrt{[\frac{(0.2484)}{168} ]}[/tex]

    = [tex]0.0385[/tex]