Respuesta :
Answer:
[tex]CV=0.2[/tex] ---- dataset 1
[tex]CV = 7.2[/tex] --- dataset 2
Step-by-step explanation:
Given
[tex]A: 30500, 27500, 31200, 24000, 27100,28600, 39100, 36900, 35000, 21400, 37900, 27900, 18700,[/tex][tex]33100[/tex]
[tex]B: 4.29, 4.88, 4.34, 4.17, 4.52, 4.80, 3.28, 3.79, 4.84, 4.77, 3.11[/tex]
Required
The coefficient of variation of each
Dataset A
Calculate the mean
[tex]\mu = \frac{\sum x}{n}[/tex]
[tex]\mu = \frac{30500+ 27500+31200+24000+ 27100+28600+ 39100+ 36900+ 35000+ 21400+ 37900+ 27900+ 18700+33100}{14}[/tex][tex]\mu = \frac{418900}{14}[/tex]
[tex]\mu = 29921.43[/tex]
Next, calculate the standard deviation using:
[tex]\sigma = \sqrt{\frac{\sum(x - \mu)^2}{n}}[/tex]
So, we have:
[tex]\sigma= \sqrt{\frac{(30500 - 29921.43)^2 +.................+ (18700- 29921.43)^2 + (33100- 29921.43)^2}{13}}[/tex]
[tex]\sigma= \sqrt{\frac{487723571.42857}{14}}[/tex]
[tex]\sigma= \sqrt{34837397.959184}[/tex]
[tex]\sigma= 5902.32[/tex]
So, the coefficient of variation is:
[tex]CV=\frac{\sigma}{\mu}[/tex]
[tex]CV=\frac{5902.32}{29921.43}[/tex]
[tex]CV=0.2[/tex] --- approximated
Dataset B
Calculate the mean
[tex]\mu = \frac{\sum x}{n}[/tex]
[tex]\mu = \frac{4.29+ 4.88+ 4.34+ 4.17+ 4.52+ 4.80+ 3.28+ 3.79+ 4.84+ 4.77+ 3.11}{11}[/tex]
[tex]\mu = \frac{46.79}{11}[/tex]
[tex]\mu = 4.25[/tex]
Next, calculate the standard deviation using:
[tex]\sigma = \sqrt{\frac{\sum(x - \mu)^2}{n}}[/tex]
[tex]\sigma = \sqrt{\frac{(4.29 - 4.25)^2 + (4.88- 4.25)^2 +.........+ (3.11- 4.25)^2}{11}}[/tex]
[tex]\sigma = \sqrt{\frac{3.859}{11}}[/tex]
[tex]\sigma = \sqrt{0.35081818181}[/tex]
[tex]\sigma = 0.593[/tex]
So, the coefficient of variation is:
[tex]CV=\frac{\sigma}{\mu}[/tex]
[tex]CV = \frac{4.25}{0.5903}[/tex]
[tex]CV = 7.2[/tex] -- approximated