Answer:
[tex]P(Penny\ and\ Dime) = \frac{9}{116}[/tex]
Step-by-step explanation:
Given
[tex]Pennies = 22[/tex]
[tex]Dimes = 27[/tex]
[tex]Nickels = 9[/tex]
[tex]Quarters = 30[/tex]
Required
[tex]P(Penny\ and\ Dime)[/tex]
This is calculated as:
[tex]P(Penny\ and\ Dime) = P(Penny) * P(Dime)[/tex]
Since it is a selection without replacement, the computation is:
[tex]P(Penny\ and\ Dime) = \frac{Penny}{Total} * \frac{Dime}{Total-1}[/tex]
So, we have:
[tex]P(Penny\ and\ Dime) = \frac{22}{22+27+9+30} * \frac{Dime}{22+27+9+30-1}[/tex]
[tex]P(Penny\ and\ Dime) = \frac{22}{88} * \frac{27}{87}[/tex]
[tex]P(Penny\ and\ Dime) = \frac{1}{4} * \frac{9}{29}[/tex]
[tex]P(Penny\ and\ Dime) = \frac{9}{116}[/tex]