Answer:
[tex]X=75\%[/tex]
Explanation:
From the question we are told that:
Concentration [tex]C_1=17.50ppb[/tex]
Volume [tex]v=9mL[/tex]
Spike Volume [tex]V_s=1.00mL[/tex]
spike Conc [tex]C_2=2.29 ppb[/tex]
Analysis Conc [tex]C_s=15.93 ppb[/tex]
Generally the equation for percent recovery is mathematically given by
[tex]X=\frac{C_s'-C_1'}{C_2'}[/tex]
Where
Concentration of spiked sample C_s'
[tex]C_s'=C_s*(v+v_s)[/tex]
[tex]C_s'=15.92*(9+1)[/tex]
[tex]C_2=159.2[/tex]
Concentration of unspiked sample C_1'
[tex]C_1'=17.50*9mL[/tex]
[tex]C_1'=157.5[/tex]
Concentration of spike sample C_2'
[tex]C_2=2.29*1[/tex]
[tex]C_2=2.29[/tex]
Therefore
[tex]X=\frac{159.2-157.5}{2.29}[/tex]
[tex]X=75\%[/tex]