Answer:
[tex]y = -\frac{5}{3}x+\frac{2}{3}[/tex]
Step-by-step explanation:
Given
[tex]f(-2) = 4[/tex]
[tex]f(1) = -1[/tex]
Required
The equation of the function
The given parameters means that:
[tex](x_1,y_1) = (-2,4)[/tex]
[tex](x_2,y_2) = (1,-1)[/tex]
Calculate the slope (m)
[tex]m = \frac{y_2 -y_1}{x_2 -x_1}[/tex]
[tex]m = \frac{-1-4}{1--2}[/tex]
[tex]m = \frac{-5}{3}[/tex]
The equation is then calculated using:
[tex]y = m(x - x_1) + y_1[/tex]
This gives:
[tex]y =\frac{-5}{3}(x--2)+4[/tex]
[tex]y =\frac{-5}{3}(x+2)+4[/tex]
Open bracket
[tex]y = -\frac{5}{3}x-\frac{10}{3}+4[/tex]
Take LCM
[tex]y = -\frac{5}{3}x+\frac{-10+12}{3}[/tex]
[tex]y = -\frac{5}{3}x+\frac{2}{3}[/tex]