Respuesta :
Answer:
[tex]y=\frac{1}{2}x[/tex]
Step-by-step explanation:
To find the inverse of a function, switch the x and y values and isolate y. After switching the x and y values of [tex]y=2x[/tex], we get [tex]x=2y[/tex].
Now divide by 2 to isolate y:
[tex]y=\frac{x}{2},\\\boxed{y=\frac{1}{2}x}[/tex]
Answer:
y = x/2
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality
Algebra I
- Functions
- Function Notation
- Inverse Functions
Step-by-step explanation:
Step 1: Define
Identify
y = 2x
Step 2: Solve
- Swap: x = 2y
- [Division Property of Equality] Divide 2 on both sides: x/2 = y
- Rewrite: y = x/2