Respuesta :

Answer:

[tex]y=\frac{1}{2}x[/tex]

Step-by-step explanation:

To find the inverse of a function, switch the x and y values and isolate y. After switching the x and y values of [tex]y=2x[/tex], we get [tex]x=2y[/tex].

Now divide by 2 to isolate y:

[tex]y=\frac{x}{2},\\\boxed{y=\frac{1}{2}x}[/tex]

Space

Answer:

y = x/2

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality  

Algebra I

  • Functions
  • Function Notation
  • Inverse Functions

Step-by-step explanation:

Step 1: Define

Identify

y = 2x

Step 2: Solve

  1. Swap:                                                                                                                x = 2y
  2. [Division Property of Equality] Divide 2 on both sides:                                 x/2 = y
  3. Rewrite:                                                                                                             y = x/2