contestada

Find the inverse of the following function. Then prove they are inverses of one another.
f (x)= root 2x-1.

Respuesta :

Answer: [tex]\dfrac{x^2+1}{2}[/tex]

Step-by-step explanation:

Given

[tex]f(x)=\sqrt{2x-1}[/tex]

We can write it as

[tex]\Rightarrow y=\sqrt{2x-1}[/tex]

Express x in terms of y

[tex]\Rightarrow y^2=2x-1\\\\\Rightarrow x=\dfrac{y^2+1}{2}[/tex]

Replace y be x to get the inverse

[tex]\Rightarrow f^{-1}(x)=\dfrac{x^2+1}{2}[/tex]

To prove, it is inverse of f(x). [tex]f(f^{-1}(x))=x[/tex]

[tex]\Rightarrow f(f^{-1}(x))=\sqrt{2\times \dfrac{x^2+1}{2}-1}\\\\\Rightarrow f(f^{-1}(x))=\sqrt{x^2+1-1}\\\\\Rightarrow f(f^{-1}(x))=x[/tex]

So, they are inverse of each other.