Respuesta :

Answer:

I think there is no solution.

Step-by-step explanation:

Substitute:

Z = -3y-5x+25

X = 3y-2z-13

Put into the last formula:

14(3y-2z-13)-2y+3(-3y-5x+25) = 48

Then:

14(3y-2(-3y-5x+25)-13)-2y+3(-3y-5(3y-2z-13)) = 48

So:

14(3y-2(-3y-5(3y-2z-13)+25)-13)-2y+3(-3y-5(3y-2(-3y-5x+25)-13)) = 48

And so on.