Respuesta :

The limit as x approaches 1 from either side should match, so that

[tex]\displaystyle\lim_{x\to1^-}f(x)=\lim_{x\to1}(-2x+a)=a-2[/tex]

[tex]\displaystyle\lim_{x\to1^+}f(x)=\lim_{x\to1}x=1[/tex]

==>   a - 2 = 1   ==>   a = 3

The answer is a = 3.

Finding Left Hand Limit (LHL)

[tex]\displaystyle \lim_{x \to \11^{-}} f(x) = -2(1) + a[/tex]

Finding Right Hand Limit (RHL)

[tex]\displaystyle \lim_{x \to \11^{+}} f(x) = 1[/tex]

For a continuous function, LHL = RHL

  • -2 + a = 1
  • a = 3