Respuesta :
Answer:
[tex]S' = (-5,-5)[/tex]
[tex]Q"=(-5,-5)[/tex]
Step-by-step explanation:
Given
[tex]S = (5,-5)[/tex]
[tex]Q= (5,5)[/tex]
Solving (a): Reflect S across y-axis
The rule to reflect across y-axis is:
[tex](x,y) \to (-x,y)[/tex]
So, we have:
[tex]S(5,-5) \to S'(-5,-5)[/tex]
Hence:
[tex]S' = (-5,-5)[/tex]
Solving (b): Reflect Q across x and y-axis
The rule to reflect across x-axis is:
[tex](x,y) \to (x,-y)[/tex]
So:
[tex]Q(5,5) \to Q'(5,-5)[/tex]
The rule to reflect across y-axis is:
[tex](x,y) \to (-x,y)[/tex]
So:
[tex]Q'(5,-5) \to Q"(-5,-5)[/tex]
Hence:
[tex]Q"=(-5,-5)[/tex]