Respuesta :

Nayefx

Answer:

[tex] \rm \displaystyle y _{ \rm tangent} = - \frac{8}{5} x - \frac{5}{2} a[/tex]

[tex] \rm \displaystyle y _{ \rm normal} = \frac{5}{8} x - \frac{765}{128} a[/tex]

Step-by-step explanation:

we are given a equation of parabola and we want to find the equation of tangent and normal lines of the Parabola

finding the tangent line

equation of a line given by:

[tex] \displaystyle y = mx + b[/tex]

where:

  • m is the slope
  • b is the y-intercept

to find m take derivative In both sides of the equation of parabola

[tex] \displaystyle \frac{d}{dx} {y}^{2} = \frac{d}{dx} 16ax [/tex]

[tex] \displaystyle 2y\frac{dy}{dx}= 16a[/tex]

divide both sides by 2y:

[tex] \displaystyle \frac{dy}{dx}= \frac{16a}{2y}[/tex]

substitute the given value of y:

[tex] \displaystyle \frac{dy}{dx}= \frac{16a}{2( - 5a)}[/tex]

simplify:

[tex] \displaystyle \frac{dy}{dx}= - \frac{8}{5}[/tex]

therefore

[tex] \displaystyle m_{ \rm tangent} = - \frac{8}{5}[/tex]

now we need to figure out the x coordinate to do so we can use the Parabola equation

[tex] \displaystyle ( - 5a {)}^{2} = 16ax [/tex]

simplify:

[tex] \displaystyle x = \frac{25}{16} a[/tex]

we'll use point-slope form of linear equation to get the equation and to get so substitute what we got

[tex] \rm \displaystyle y - ( - 5a)= - \frac{8}{5} (x - \frac{25}{16} a)[/tex]

simplify which yields:

[tex] \rm \displaystyle y = - \frac{8}{5} x - \frac{5}{2} a[/tex]

finding the equation of the normal line

normal line has negative reciprocal slope of tangent line therefore

[tex] \displaystyle m_{ \rm normal} = \frac{5}{8}[/tex]

once again we'll use point-slope form of linear equation to get the equation and to get so substitute what we got

[tex] \rm \displaystyle y - ( - 5a)= \frac{5}{8} (x - \frac{25}{16} a)[/tex]

simplify which yields:

[tex] \rm \displaystyle y = \frac{5}{8} x - \frac{765}{128} a[/tex]

and we're done!

( please note that "a" can't be specified and for any value of "a" the equations fulfill the conditions)

Answer:

In attachment

Step-by-step explanation:

For answer refer to attachment .

Ver imagen VirαtKσhli
Ver imagen VirαtKσhli