Respuesta :

Given:

On a unit circle, the terminal point of θ is [tex]\left(\dfrac{\sqrt{2}}{2},\dfrac{\sqrt{2}}{2}\right)[/tex].

To find:

The value of [tex]\theta[/tex].

Solution:

If the terminal point of θ is (x,y), then

[tex]\tan \theta=\dfrac{y}{x}[/tex]

On a unit circle, the terminal point of θ is [tex]\left(\dfrac{\sqrt{2}}{2},\dfrac{\sqrt{2}}{2}\right)[/tex]. So,

[tex]\tan \theta=\dfrac{\dfrac{\sqrt{2}}{2}}{\dfrac{\sqrt{2}}{2}}[/tex]

[tex]\tan \theta=1[/tex]

[tex]\tan \theta=\tan \dfrac{\pi}{4}[/tex]

[tex]\theta=\dfrac{\pi}{4}[/tex]

Therefore, the correct option is D.