Respuesta :

By definition of conditional probability,

P(X ≤ 0.5 | X ≤ 1) = P((X ≤ 0.5) and (X ≤ 1)) / P(X ≤ 1)

but if X ≤ 0.5, then it's automatic that X ≤ 1, so

P(X ≤ 0.5 | X ≤ 1) = P(X ≤ 0.5) / P(X ≤ 1)

Given the PDF of X,

[tex]f_X(x) = \begin{cases}2e^{-2x}&\text{if }x\ge0\\0&\text{otherwise}\end{cases}[/tex]

the CDF would be

[tex]P(X\le x) = F_X(x) = \displaystyle\int_{-\infty}^x f_X(t)\,\mathrm dt[/tex]

[tex]F_X(x) = \begin{cases}0&\text{if }x<0\\1-e^{-2x}&\text{if }x\ge0\end{cases}[/tex]

So we have

P(X ≤ 0.5 | X ≤ 1) = (1 - exp(-2 × 0.5)) / (1 - exp(-2 × 1))

… = (1 - exp(-1)) / (1 - exp(-2))

… = (1 - 1/e) / (1 - 1/e ²)

… = (e ² - e) / (e ² - 1)

… = e / (e + 1) ≈ 0.7312