Answer:
[tex]A' = (-2,2)[/tex]
[tex]B' = (2,2)[/tex]
[tex]C' = (2,-2)[/tex]
Step-by-step explanation:
Given
[tex]A = (-6,6)[/tex]
[tex]B = (6,6)[/tex]
[tex]C = (6,-6)[/tex]
[tex]k = \frac{1}{3}[/tex]
Required
The new coordinates
To do this, we simply multiply the coordinates of [tex]\triangle ABC[/tex] by the factor of dilation.
i.e.:
[tex]A' = A * k[/tex]
[tex]B' = B * k[/tex]
[tex]C' = C * k[/tex]
So, we have:
[tex]A' = (-6,6) * \frac{1}{3}[/tex]
[tex]A' = (-2,2)[/tex]
[tex]B' = (6,6) * \frac{1}{3}[/tex]
[tex]B' = (2,2)[/tex]
[tex]C' = (6,-6) * \frac{1}{3}[/tex]
[tex]C' = (2,-2)[/tex]