For the specified margin of​ error, confidence​ level, and educated guess for the observed​ value, obtain a sample size that will ensure a margin of error of at most the one specified​(provided, of​ course, that that observed value of the sample proportion is further from 0.5 than the educated​ guess).

Margin of errorequals= 0.04​
Confidence levelequals=95%
Educated guessequals=0.32

n=?

Respuesta :

Answer:

The appropriate answer is "523".

Step-by-step explanation:

Given:

Margin of error,

E = 0.04

Confidence level,

= 95%

Educated guess,

[tex]P_g[/tex] = 0.32

According to the question,

[tex]\alpha = \frac{100-95}{100}[/tex]

   [tex]=0.05[/tex]

[tex]\frac{\alpha}{2} = \frac{0.05}{2}[/tex]

   [tex]=0.025[/tex]

[tex]Z_{0.025} = 1.96[/tex]

The sample size will be:

⇒ [tex]n=P_g (1-P_g) (\frac{Z_{\frac{\alpha}{2} }}{E} )^2[/tex]

By substituting the values, we get

       [tex]=0.32(1-0.32)(\frac{1.96}{0.04} )^2[/tex]

       [tex]=0.32\times 0.68\times (49)^2[/tex]

       [tex]=0.32\times 0.68\times 2401[/tex]

       [tex]=522.4576[/tex]

or,

       [tex]=523[/tex]