Consider this function. F(x) = 5x How is function f transformed to create function g? Match each transformation of function f with its description. Vertical compression of a factor of arrowRight horizontal stretch of a factor of 3 arrowRight horizontal compression of a factor of arrowRight vertical stretch of a factor of 3 arrowRight

Respuesta :

Answer:

[tex]g(x) = 3(5)^x[/tex] ----- vertically stretched by 3

[tex]g(x) = \frac{1}{3}(5)^x[/tex] ----- vertically compressed by 1/3

[tex]g(x) = 5^{\frac{1}{3} x}[/tex] ----- horizontally stretched by 3

[tex]g(x) = 5^{3x}[/tex] ----- horizontally compressed by 3

Step-by-step explanation:

Given

[tex]f(x) = 5^x[/tex]

[tex]g(x) = 3(5)^x[/tex]

[tex]g(x) = 1/3(5)^x[/tex]

[tex]g(x) = 5^{\frac{1}{3} x}[/tex]

[tex]g(x) = 5^{3x[/tex]

Required

Match each expression of g(x) to the appropriate transformation

When a function is stretched vertically, the transformation rule is:

[tex](x,y) \to (x,ay)[/tex]

[tex]|a| >1[/tex]

[tex]g(x) = 3(5)^x[/tex] implies that:

[tex](x,f(x)) = (x,3f(x))[/tex]

[tex]3f(x) = 3(5)^x[/tex]

Hence:

[tex]g(x) = 3(5)^x[/tex] ----- vertically stretched by 3

When a function is compressed vertically, the transformation rule is:

[tex](x,y) \to (x,ay)[/tex]

[tex]|a| <1[/tex]

[tex]g(x) = 1/3(5)^x[/tex] implies that:

[tex](x,f(x)) = (x,\frac{1}{3}f(x))[/tex]

[tex]\frac{1}{3}f(x) = \frac{1}{3}(5)^x[/tex]

Hence:

[tex]g(x) = \frac{1}{3}(5)^x[/tex] ----- vertically compressed by 1/3

When a function is stretched horizontally, the transformation rule is:

[tex](x,y) \to (ax,y)[/tex]

[tex]|a| <1[/tex]

[tex]g(x) = 5^{\frac{1}{3} x}[/tex] implies that:

[tex](x,f(x)) = (\frac{1}{3}x,f(x))[/tex]

[tex]f(\frac{1}{3}x) = 5^{\frac{1}{3} x}[/tex]

Hence:

[tex]g(x) = 5^{\frac{1}{3} x}[/tex] ----- horizontally stretched by 3

When a function is horizontally vertically, the transformation rule is:

[tex](x,y) \to (ax,y)[/tex]

[tex]|a| >1[/tex]

[tex]g(x) = 5^{3x[/tex] implies that:

[tex](x,f(x)) = (3x,f(x))[/tex]

[tex]f(3x) = 5^{3 x}[/tex]

Hence:

[tex]g(x) = 5^{3x}[/tex] ----- horizontally compressed by 3

Answer:

Answer:

g(x) = 3(5)^x  ----- vertically stretched by 3

g(x) = 1/3(5)^x  ----- vertically compressed by 1/3

g(x) = 5^1/3x. ----- horizontally stretched by 3

g(x) = 5^3x ----- horizontally compressed by 3

Step-by-step explanation: