the tens digit of a two digit number is 5 greater the units digit. If you subtract double the reversed number from it, the result is a fourth of the original number. Find the original number.

Respuesta :

Given:

The tens digit of a two digit number is 5 greater the units digit.

If you subtract double the reversed number from it, the result is a fourth of the original number.

To find:

The original number.

Solution:

Let n be the two digit number and x be the unit digit. Then tens digit is (x+5) and the original number is:

[tex]n=(x+5)\times 10+x\times 1[/tex]

[tex]n=10x+50+x[/tex]

[tex]n=11x+50[/tex]

Reversed number is:

[tex]x\times 10+(x+5)\times 1=10x+x+5[/tex]

[tex]x\times 10+(x+5)\times 1=11x+5[/tex]

If you subtract double the reversed number from it, the result is a fourth of the original number.

[tex]11x+50-2(11x+5)=\dfrac{1}{4}(11x+50)[/tex]

[tex]11x+50-22x-10=\dfrac{1}{4}(11x+50)[/tex]

[tex]40-11x=\dfrac{1}{4}(11x+50)[/tex]

Multiply both sides by 4.

[tex]160-44x=11x+50[/tex]

[tex]160-50=11x+44x[/tex]

[tex]110=55x[/tex]

Divide both sides by 55.

[tex]\dfrac{110}{55}=x[/tex]

[tex]2=x[/tex]

The unit digit is 2. So, the tens digit is [tex]2+5=7[/tex].

Therefore, the original number is 72.