Respuesta :

Answer:

[tex]y+1=3x[/tex]

OR

[tex]y-2=3(x-1)[/tex]

Step-by-step explanation:

Hi there!

Point-slope form: [tex]y-y_1=m(x-x_1)[/tex] where m is the slope and [tex](x_1,y_1)[/tex] is a point

1) Determine the slope (m)

[tex]m=\displaystyle \frac{y_2-y_1}{x_2-x_1}[/tex] where two points that fall on the line are [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex]

Plug in the points (0,-1) and (1,2):

[tex]m=\displaystyle \frac{2-(-1)}{1-0}\\\\m=\displaystyle \frac{2+1}{1}\\\\m=3[/tex]

Therefore, the slope of the line is 3. Plug this into [tex]y-y_1=m(x-x_1)[/tex]:

[tex]y-y_1=3(x-x_1)[/tex]

2) Plug a point into the equation

[tex]y-y_1=3(x-x_1)[/tex]

Because we're given two points, there are two ways we can write the equation:

[tex]y-y_1=3(x-x_1)y-(-1)=3(x-0)\\y+1=3x[/tex]

OR

[tex]y-y_1=3(x-x_1)\\y-2=3(x-1)[/tex]

I hope this helps!