Respuesta :

Answer:

B

Step-by-step explanation:

We want to find the value of:

[tex]\displaystyle |6-3i|[/tex]

Recall that given a complex number z in the form:

[tex]z=a+bi[/tex]

The absolute value of z will be given by:

[tex]\displaystyle |z| = \sqrt{a^2+b^2}[/tex]

We have the complex number:

[tex]6-3i[/tex]

Thus, a = 6 and b = -3.

Then its absolute value will be:

[tex]|6-3i|=\sqrt{(6)^2+(-3)^2}[/tex]

Evaluate:

[tex]\displaystyle |6-3i|= \sqrt{36+9}=\sqrt{45}=3\sqrt{5}[/tex]

Hence, our answer is B.