Respuesta :

Answer:

The correct answer is the letter C.

Step-by-step explanation:

We can use the following trigonometric identity:

[tex]cos(60)=\frac{6}{b}[/tex] (1)

[tex]cos(45)=\frac{c}{b}[/tex] (2)

Solving each equation by b and equaling we have:

[tex]\frac{6}{cos(60)}=\frac{c}{cos(45)}[/tex]

[tex]\frac{6}{cos(60)}=\frac{c}{cos(45)}[/tex]

Let's recall that:

[tex]cos(45)=\frac{1}{\sqrt{2}}[/tex]

[tex]cos(60)=\frac{1}{2}[/tex]

Then we have:

[tex]c=\frac{cos(45)*6}{cos(60)}[/tex]

[tex]c=\frac{2*6}{\sqrt{2}}[/tex]

[tex]c=\frac{12}{\sqrt{2}}[/tex]

[tex]c=6\sqrt{2}[/tex]

Using equation (1) we can find b.

[tex]cos(60)=\frac{6}{b}[/tex]  

[tex]b=12[/tex]      

Finally, we can find a using the next equation:

[tex]tan(60)=\frac{a}{6}[/tex]

[tex]a=6*tan(60)[/tex]

[tex]a=6\sqrt{3}[/tex]

Therefore, the correct answer is the letter C.

I hope it helps you!