Determine the critical values for the confidence interval for the population standard deviation from the given values. Round your answers to three decimal places.
n = 12 and c = 0.9.

Respuesta :

Answer:

The answer is "[tex]\chi^2_{L} = 4.575 \ and\ \chi^2_{U}= 19.675[/tex]"

Step-by-step explanation:

[tex]n=12\\\\\ c= 0.9[/tex]

Calculating the level of significance [tex](\alpha) = 1 -c[/tex]

                                                                  [tex]=1-0.9\\\\=0.1[/tex]

Calculating the degrees of freedom:

[tex]df=n-1=12-1=11[/tex]

Calculating the critical value:

Applying the Chi-Square table, the critical values for the two-tailed test with a degree of freedom  (11) for the significance level of [tex]\alpha = 0.1[/tex]:

[tex]\chi^2_{L} = 4.575 \\\\\chi^2_{U}= 19.675[/tex]